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ARTICLE INFO ABSTRACT

Keywords: The rapid propagation of weeds is a major issue for turfgrass management (both ornamental and sports turf).
Image processing While pesticides can ensure weed eradication, they pose a risk to human health and the environment. In this
Filters context, the early detection of weeds can allow a dramatic reduction in the amount of pesticide required. Here
Golf course we present the use of edge detection techniques to identify the presence of these invasive plants in ornamental
g;?;i?;;ll ttl:;nique lawns and sports turf. Regarding the former, images from small experimental plots in the facilities of IMIDRA
Sharpening filter were used while images for the latter were taken on a golf course. Up to 12 different filters for edge detection
were tested on the images collected. Aggregation techniques, with a range of cell values, were applied to the
results of the three most effective filters (sharpening (I), sharpening (II), and Laplacian) to minimise the number
of false positives. After the tests with different cell sizes, two filters were selected for more in-depth analysis. Box
plots were selected to define the best cell size and identify the filter with the best performance. The sharpening
() filter and the aggregation technique with the minimum value and a cell size of 10 offered the best results.
Finally, we determined the most appropriate threshold value on the basis of the number of false positives, false
negatives, and derived indexes (Precision, Recall, and F1-Score). A threshold of 78 gave the best performance.

The results achieved with this methodology differed slightly between ornamental and sports turf.

1. Introduction

Weed propagation is a major problem for golf course and orna-
mental turf management. These invasive plants compete with the
turfgrass for sunlight, soil nutrients, water and space (Paikekari et al.,
2016; Christensen et al., 2009). Also, weeds can be unsightly and may
affect the quality of play on golf courses (Waters, 2019). Indeed, in one
study, 50% of the golf players reported that they might stop using a golf
course if there were too many weeds on the fairways (Anne Mette Dahl
Jensen). Moreover, other authors have described that the invasion of
weeds in parks and common green areas could reduce the usability of
public spaces (McElroy and Martins, 2013). Also, the same study re-
ported that weeds can cause seasonal erosion due to their inability to
maintain a continuous surface, as it is the case with adapted turfgrass
species.

Therefore, in this context, the elimination and control of weeds is
essential. However, this task is difficult because weeds show faster
growth than turfgrass species. Moreover, if not detected early and
eradicated, weeds can spread rapidly, invading all turfgrass surfaces.
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Herbicides are widely used for weed control as they are easy to use and
fast-acting. However, the use of significant amounts of herbicide causes
environmental pollution and increases the cost of weed control
(Watchareeruetai, 2007; Watchareeruetai and Takeuchi, 2006). Fur-
thermore, given that the citizenry comes into direct contact with both
urban and sports turfgrass leisure areas, the use of chemical herbicides
is discouraged. In this regard, alternatives to chemical products for
weed control and removal are called for. Indeed, a weed control method
that allows a reduction in the use of herbicides or a non-chemical
method is preferred (Watchareeruetai and Takeuchi, 2006).
Technological advances seeking to ensure crop sustainability and
environmental protection have brought about a decrease in the use of
chemical herbicides. In this context, considerable research effort is
being channelled into systems that allow a further reduction of herbi-
cide use, thereby decreasing water contamination and the damaging
effects caused by these chemicals on the environment (Yang et al.,
2003; Loni et al., 2014). Remote sensing techniques and sensors have
emerged as effective approaches for the early detection and precise
identification of weed species. In this regard, digital imagery can
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capture images of a grass surface and process them to identify distinct
compositions. In the context of weeds, this technique analyses the
images in two stages, first by the segmentation of vegetation against the
background (soil and harvest remnants) and second by the detection of
the vegetation pixels that represent these invasive plants (Burgos-
Artizzu et al., 2011). Moreover, the segmentation of vegetation usually
assumes that all pixels corresponding to vegetation can be easily ex-
tracted by a combination of the colour planes on the RGB (red, green,
blue) bands (Yang et al., 2003; Ribeiro et al., 2005). In some cases, a
combination of pixel values in each of the bands can be used (Chauhan
and Johnson, 2011), while in others the method selected was the
boundary detection tool (Parra et al., 2019; Burgos-Artizzu et al.,
2011).

After identification of vegetation pixels, weed detection by proces-
sing methods is usually achieved by merging information on the dif-
ferences in colour, form, texture, position and size and spectrum of
weeds and crop (Burgos-Artizzu et al., 2011). Moreover, a study in a
corn crop described a computer vision system that can be used with
videos (Burgos-Artizzu et al., 2011). Those authors checked the effec-
tiveness of their system under different light conditions and informed
that it detects 95% of weeds and 80% of crops. Another image pro-
cessing methodology for weed detection used colour to differentiate
between soil and grass (Manual of DSC-W120 Camera). The resulting
image was then converted to a grayscale image to apply an edge de-
tection technique. Afterwards, the image derived from edge detection
was divided into 25 blocks, and the analysis of each block determined
whether it contained narrow leaves of weeds, broad leaves of weeds, or
crops. Furthermore, the use of ultra-high resolution aerial images to
detect intra-row and inter-row weeds has been described (Manual of
Canon EOS 77D Camera). In that study, the authors used semi-auto-
matic object-based image analysis with randomly chosen forests. Also,
they used the aforementioned techniques to classify soil, weeds, and
crops. They applied this approach to corn crop fields and reported that
it gave excellent results, but that it required powerful software to per-
form target recognition. Several studies have applied simple image
processing techniques to turfgrass (Paikekari et al., 2016; Gao et al.,
2018). Image processing was used to detect turf cover on lawns
(Paikekari et al., 2016; Gao et al., 2018). In those studies, they worked
with the histograms of the grass images to determine the weight of the
grass and the level of coverage (high, low, very low). Subsequently,
they showed the use of a new form of weed detection based on pho-
tographs taken from drones. In this case, a combination of the pixel
values in the RGB bands was used to distinguish different types of cover
(soil, grass and weed), and their results offered different formulas de-
pending on the needs, with different percentages of false positives and
false negatives (Parra et al., 2019).

Here we present the use of digital images and processing as a low-
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cost and straightforward technique for the early detection of weeds in
turfgrass, thereby allowing early measures to be adopted to prevent
their rapid propagation in all turfgrass surfaces and thus facilitating
real-time control and treatment. This paper proposes an optimal com-
bination of edge detection and post-processing techniques to identify,
with a threshold value, weed and turfgrass presence. A series of pictures
were used to test the suitability of the proposed methodology and to
select the most effective filter for edge detection. Various grass species,
including Agropyron cristatum, Cynodon dactylon, Lolium hybridum, Poa
annua, Agrostis stolonifera, Festuca arundinacea, and Agrostis stolonifera,
were photographed in two locations. In all cases, the turfgrass was
composed of two grass species. Although Poa annua can be considered a
weed, in this paper we focused on the detection of dicotyledonous
species. First, we tested up to 12 different filters for edge detection and
compared their performance. Of these filters, we selected the three with
the most promising results. Next, we evaluated various post-processing
options, including different cell sizes for aggregation techniques and
distinct mathematical operators. Finally, we used new images to test the
best threshold value using different indexes that take into account false
positives and false negatives.

2. Materials and methods
2.1. Selected location

To test our proposal, we selected two locations with lawns with a
uniform appearance and holding different grass combinations. Also, the
selected locations had tall and short grass coverage, thereby covering
distinct field scenarios.

The first location was “El Encin”, the experimental area of the
IMIDRA laboratories. This area holds experimental plots, each mea-
suring 1.5 m? used to evaluate the performance of different grass
combinations under water stress conditions. However, the grass cov-
erage is low in some of the plots due to reduced irrigation. These plots
were used to test the different methodologies for edge detection. We
used pictures of areas with high and low grass coverage and with and
without weed presence.

Furthermore, we sought to evaluate the performance of the pro-
posed method in a real scenario. In this regard, we selected a second
location, “Encin Golf”, a golf course located 1 km away from the ex-
perimental plots. The golf course has several differentiated areas, in-
cluding different grass species, different mowing patterns, and a low
presence of weeds. However, weeds have appeared in some areas of the
golf course. We took pictures of these areas, which include teeing areas,
greens, and the fairway, among others. The location of the two sites is
shown in Fig. 1.

8 0 150300 600 900
B S w——\eters

=
: 1 Golf course

Experimental plots

Fig. 1. Location of the two areas used to obtain the pictures used in this study.
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Table 1
Detaills of species included.
1d Grass Species Weed Species Type Location
0) Agropyron cristatum Cynodon dactylon Malva sylvestris Diplotaxis erucoides Ornamental Experimental plot
A Lolium hybridum Poa annua Diplotaxis erucoides Sports Fairway
B Agrostis stolonifera Poa annua Centaurea sp. Sports Green area
C Agrostis stolonifera Poa annua Centaurea sp. Sports Green area
D Lolium hybridum Festuca arundinacea Malva sylvestrisTaraxacum officinaleCentaurea sp. Ornamental Outrough area
E Agrostis stolonifera Poa annua Daucus carota Sports Green area

2.2. Species included

We included different species of turfgrass and weeds. For the
former, we took pictures of ornamental and sports turfgrass. Among the
ornamental turfgrass, C3 and C4 species were analysed to develop a
methodology that is not affected by the predominant species in the
turfgrass. In the sports turfgrass, C3 grass species were examined.
Table 1 provides details of the pictures used, details of grass and weed
species, as well as location.

2.3. Equipment used to take the pictures

We used two types of camera to ensure that the application of the
methodology regardless of the origin of the images in terms of camera.

To collect the pictures at the experimental plots of IMIDRA, a Sony
DSC-W120 digital camera was used. This camera has a Super HAD CCD
sensor. The pictures obtained had a resolution of 7.2 megapixels (MP).
More details of this camera can be found in Table 2. For pictures of the
golf course, we used a Canon EOS 77D digital single-lens reflex camera.
This device has a CMOS sensor of 22.3 X 14.9 mm that gives a picture
of 24.20 effective MP. The features of this camera are shown in Table 1.
The distance between the camera and the grass was also another vari-
able. While in the experimental plots all the pictures were taken from a
height of 1.5 m, the height varied from 1 to 1.5 m for pictures of the
golf course. These heights were chosen to ensure the capture of the
entire experimental plot in a single picture while maintaining a high
resolution. In addition, 1.5 m is the height at which other pictures used
in previous papers were gathered (Parra et al., 2019).

2.4. Methodology

2.4.1. Pre-processing

Pre-processing steps involved the reduction of picture-size and the
extraction of grass images. The former was carried out only for the
evaluation of the method and was not used in true field conditions. The
reduction of picture size allowed for easier evaluation of the results and
reduced the number of processed data. Moreover, it allowed us to re-
move parts of the pictures showing other surfaces, such as tarpaulins.
Therefore, not all pictures were the same size.

The second step, namely the extraction of grass images, was

Table 2
Characteristics of cameras used.

Characteristics Camera used at IMIDRA Camera used at golf

course

Commercial name Sony DSC-W120 (Marin
Peira et al., 2017)

2048x1536 pixels

Canon EOS 77D (Marin
et al., 2018)

Size of the picture 6000 x 4000 pixels

Horizontal and vertical 72 ppp 72 ppp
resolution

Bit Depth 24 24

F point f/7.1 f/7.1

Focal distance 5 mm 18 mm

Exposure time 1/400 s 1/250 s

ISO Velocity I1SO — 125 ISO — 100

performed when the method was implemented in true field conditions,
at the golf course. The aim of this step was again to reduce the amount
of processed data. We used an equation described in (Parra et al.,
2019), which allowed extraction of only the green grass from the pic-
ture by combining the picture bands. Each picture was divided into
three bands, also known as RGB bands.

2.4.2. Edge detection

The green grass data isolated in the photos from the pre-processing
stage was used with the edge detection methods to determine the
presence or absence of weeds. It is important to note that this method
works with the single bands of the RGB pictures.

Edge detection aims to determine the areas (pixels) that can be
defined as an edge. According to the operational principle of this
technique, an edge is a pixel that has a different value to that of its
neighbours in the selected band of the RGB picture. In our case, the
edge represents the limits of each leaf. The higher the difference, the
greater the edge, thereby indicating a significant difference between the
object (a leaf in our case) and the nearby object. Several filters are used
to determine where the edges are placed. The filters use a matrix to
calculate the new value of the pixel, which is integrated with that of
neighbour pixels. With the calculated data, a new image is created. In
this new image, the areas that do not represent a change—and are
therefore not edges—have low values (close to 0).

In contrast, the areas considered edges have higher values. The
exact value depends on the filter selected. Given that not all filters can
detect all the edges of a picture, we sought to determine the best per-
forming filter for the detection of weeds. To this end, we hypothesised
that the areas of the picture that represent grass have a high variation,
which would be considered as edged in the new image. Meanwhile, the
areas of the picture representing weeds would have a higher uniformity
because weeds have taller leaves compared to grass and they would be
represented by low values in the resulting image.

Different kinds of filters can be used to build the matrix. Most filters
included in the matrix use the value of the pixel (PI) and that of its eight
closest neighbours (N1, N2, ..., N8) to calculate the value assigned to
the PI in the new image. Thus, most of the matrices used are 3x3.

Regarding filters, they can be divided into different groups: (i) edge
detection filters (these were used to determine the areas corresponding
to weeds); (ii) sharpening filter (these were used for weed detection);
and (iii) smoothing filters (these were used in the post-processing).

First, with respect to edge detection filters, we focused on those
most commonly used: gradient, line detection, Laplacian, and Sobel.

When the goal is to detect changes (edges) in increments of 45°,
gradient filters are the most useful. In this regard, there are different
matrices for different gradient filters. We used the North, East, South,
and West Gradient filters, shown in Fig. 2. It is important to note that
each filter detects the edges in a specific direction. The gradient filters
have been widely used to detect edges in remote sensing for urban
areas. However, their use for the detection of uneven edges is not re-
commended, since the edges do not follow regular vertices or vectors.

We used four variants of line detection filters (Fig. 3). The variants
differ depending on the direction of the edges that the filter highlights.
Hence, the vertical line and horizontal line are the simplest filters and
the left diagonal line and right diagonal line are more complex ones.
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Line detection filters are similar to gradient filters, in that each one is
useful for detecting changes in a specific direction.

Regarding Laplacian filters, we used the simplest variant, which
uses an operator comprising a 3x3 matrix (Fig. 4). The main difference
between this filter and the previous ones is that it offers the possibility
to detect edges regardless of the direction or the gradient of the change.

Finally, regarding the Sobel filters, they are already covered by the
gradient filters as some matrices are shared. To ease the nomenclature,
we refer to the vertical Sobel as west gradient filter and the horizontal
Sobel as north gradient filter.

Of note, all the filters can be applied individually to determine the
edges of a picture. However, some filters can be used jointly to enhance
edge detection. This option is particularly relevant in the case of the
line detection filters and gradient filters. In this regard, we combined
the two types to improve the detection of edges in different gradients
and directions, thereby overcoming the main limitations of each filter.
In this regard, each filter was applied individually, and the resulting
image of each one was combined by simply adding the value of each
pixel in each of the resulting images. This approach generated a new
image that represented a combination of different filters.

Regarding the smoothing and sharpening filters, these were used in
the post-processing stage. Like the other types of filter, there are many
variants. We used two variants that use as operator a 3x3 matrix and
one that uses a 5x5 matrix (Fig. 5). These high-pass filters accentuate
the comparative difference between the PI and its neighbours, as was
done by the aforementioned filters.

2.4.3. Post-processing

To ensure that the areas classified as weed truly corresponded to
weed leaves and not to other surfaces, we used an aggregation tech-
nique to reduce the number of false positives.

Aggregation techniques allow the value of a single pixel to be
combined with that of its neighbours. Also, they increase the size of the
pixel. The new pixel has a value and a size that is calculated according
to the selected tool. When defining the tool to be used, the size of the
resulting pixels, as well as the mathematical operator used to calculate
the value of these new pixels must be selected. A mathematical operator
such as maximum, minimum, mean, median, or even the summation of
the pixels can be used. The size of the new pixels will affect the number
of neighbours to be combined. The bigger the cell or size of the new
pixel, the higher the number of pixels that will be combined in the
mathematical operator.

The operator selected will depend on the purpose. As our intention
was to detect the areas where a group of pixels presented a low value,
those mathematical operators that maximise the higher values to avoid
false positives were required. Therefore, we chose the maximum and
the summation as mathematical operators. Regarding cell size, we
considered the following values: 3, 5, and 10. Fig. 6 provides an

Vertical Line Horizontal Line
-11 -11 -11 -11 2: '1, ‘1, 2,
2, 2, 2, -1, 2, -1, 2, -1,
-1, -1, -1, -1, 2 2, -1, -1,

Left Diagonal Line Right Diagonal Line
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Fig. 2. Gradient filters used in our study.
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Fig. 4. The Laplacian filter used in our study.

example of the operation principle of this aggregation technique in the
case of a cell size of 3. In this figure, we include a portion of the picture
of 9x9 pixels, as a detailed example, and a more significant portion of
one of the pictures used in this study (Picture A), and the results of
applying the aggregation technique of summation and maximum op-
erators.

Once the aggregation technique had been applied, we grouped the
pixels of the resulting image into two categories: weed (or positive
detection) and grass (or negative detection). Various approaches can be
used to classify pixels. In previous work, we reported the benefits of
statistical parameters to create classes when the lighting conditions
change. Other options include the use of natural breaks, also known as
Jenks, or a threshold value based on the preliminary results.

The block diagram shown in Fig. 7 shows the steps of our metho-
dology, from the attainment of the bands to the classification.

2.5. Comparison of filters

We first selected two of the pictures to evaluate the performance of
the selected filters. The pictures were of areas with weed presence, and
each one was taken in different light conditions (different day and
hour). Furthermore, the first picture, taken at the experimental plots,
presented several areas with low coverage or no grass coverage. In
contrast, the second picture, taken at the golf course, presented very
high grass coverage. Thus, the comparison of filters offered us results in
different scenarios and ensures that our method can be applied re-
gardless of grass coverage.

To check the performance of filters, we examined their capacity to
differentiate leaf edges. The raw data (the RGB composition) and the
equation to extract the grass were used in conjunction with the filters.
Figs. 8 and 9 show the results of the filters for the two pictures. The red
circles indicate the exact location of the weeds. The figures contains the
entire picture used as the RGB composition, the RGB composition
without the soil, the Red Band without soil, and the results of the ap-
plication of filters. The RGB composition reveals the weed and the

Fig. 3. Line detection filters used in our study.
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Fig. 5. Sharpening filters used in our study.

grass. We include a zoom of the first three images (RGB compositions
and the red band) to allow better visualisation.

The results indicate that the gradient filters are not useful for weed
detection since they discerned changes in only one direction. The same
results were found when using the line detection filters. The Laplacian
filter appeared to give better results since the areas that represented the
broad leaves of weed species were characterised by low values. In
contrast, the results of the sharpening filters proved that capacity to
detect weed, but not in an expected way. The pixels that represented
weed leaves had higher values than the rest. We hypothesised that, after
the application of filters, the areas with profound changes (the broad-
leaves of weed species) would have low values, and that an aggregation
technique such as summation or maximum would allow us to identify
those leaves. Therefore, to use the outputs of the sharpening filters,
another aggregation technique was required.

Having confirmed that the Laplacian and the sharpening filters gave
excellent results in the pictures taken, we examined their effectiveness
in pictures of different areas of the golf course, including fairway, green
and outrough. The purpose of this step was to ensure that the filters
could be used regardless of the intrinsic characteristics of each area. Of
note, the grass characteristics of each of these areas, including the
species and grass height, differed, as did the presence of weed species
(due to distinct maintenance practices). Fig. 10 presents the results of
the filters that offer the best chances of detection in Figs. 8 and 9 in
Pictures A) to D). Fig. 10 includes four images of weeds detected in the
golf course: image A) corresponds to the fairway, B) and C) to green

areas and D) to the outrough. As in the previous figures, the soil and
dead leaves were extracted from the picture, and only the green leaves
are shown. In addition, the weeds are indicated with a red circle. The
results of the Laplacian filters show that the areas representing weed
leaves have a lighter colour. In contrast in the sharpening filters, the
weed leaves are indicated in a darker colour. Despite excellent perfor-
mance of these two types of filter in detecting weeds, several grass
leaves were marked with colours similar to those corresponding to
weeds. Therefore, as expected, we had to apply a post-processing ag-
gregation method to downplay the number of false positives.

2.6. Evaluation of aggregation techniques

In this subsection, we identify the threshold value that can be
considered as positive detection and define the correct parameters for
the aggregation technique. The aggregation technique used for the
Laplacian and sharpening filters differed. For the former, we used the
maximum value and for the latter the minimum value.

Of note, the use of the Laplacian filter with an aggregation tech-
nique has been found to be useful for identifying weed plants (Parra
et al., 2019). In that study, the authors proposed a threshold of 18 as a
suitable limit with proper illumination. Since our pictures were taken in
similar environmental conditions, we applied this threshold and eval-
uated its suitability. However, given the lack of information regarding a
threshold for the two sharpening filters, we assessed convenient
threshold values for the three selected filters. To this end, we divided
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Fig. 6. Differences between aggregation techniques with fixed cell size and two mathematical operators.
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each picture into 12 subpictures and obtained the statistical informa-
tion of the pixels in each one. Next, we used the data obtained, in-
cluding the minimum, maximum, and mean value, to define the
threshold for each filter. With regards to the aggregation technique, we
considered the maximum value for the Laplacian filter and the
minimum value for the two sharpening filters. These mathematical
operators were selected to reduce the number of false positives by
smoothing the data.

First, Picture C was used to compare was used to compare the
performance of the three filters, without taking into account any
threshold value. The data of each of the 12 subpictures is shown in
Fig. 11, which indicates the maximum (Max) value of the pixel in each
one subpictures for the sharpening (I) and (II) filters and the minimum
value for the Laplacian filter. The weed plant is shown in subpicture 8.
We first sought to determine whether the filters could identify this
weed. To this end, we compared the value (Max or Min) obtained with
each filter in subpicture 8 with the other subpictures. When the cell size

RGB composition

Zoom to part
of the picture
with weed

RGB composition without soil

was equal to 3, the values provided by the filters were similar for each
subpicture. We therefore concluded that this cell size was not useful.
For a cell size of 5, the results of the sharpening (I) filter continued to be
similar; however, the higher maximum pixel value, were found for
subpictures 5, 8 10 and 11.

In contrast, when the sharpening (II) filter was used, the maximum
pixel values were found in subpictures 4, 8, 10 and 11. In the case of the
Laplacian filter, the only subpicture that gave a result other than 0 was
subpicture 5. Finally, for a cell size of 10, the sharpening (I) filter gave
the highest pixel values in subpicture 8, with a maximum value of 159,
followed by the subpicture 10, with a maximum value of 110. These
results indicate that this combination of filter and aggregation tech-
nique is a promising option for weed identification. However, the re-
sults from the sharpening (II) filter indicates that this approach is not
optimal for weed detection since the maximum value was not found in
subpicture 8. Also, the results of the Laplacian filter with a cell size of
10 often gave a similar result to subpictures 3 and 8. The minimum

Red band without soil

Results of
application of
individual
filters
Right Diagonal Line

e

s .
Shar,

Fig. 8. Results of the application of the filters in images taken in the research facilities.
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Fig. 9. Results of the application of the filters in images taken at the golf course.

pixel value for those subpictures was 21. This value, which can be used filter was omitted from further study. Moreover, since the results of a
as a potential threshold, is higher than the threshold reported in pre- cell size of 3 gave similar results in all the subpictures (especially for the
vious papers (Parra et al., 2019). Laplacian filter), we focused on cell sizes of 5 and 10. On the basis of

After considering the results presented in Fig. 12, the sharpening (II) the data analysis presented in Fig. 12, we provide a summary of the

RGB composition Laplacian [3x3] Sharpening (1) [3x3]

Sharpening (I1) [3x3]

B)

Q

Fig. 10. Results of the selected filters in four images representing different areas of the golf course (A) fairway, (B) and (C) greens and (D) outrough).
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Fig. 11. Maximum and minimum pixel value in each subpicture of Picture B combining different filters and cell size for the aggregation technique.
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Golf Course Low Weed Presence Picture E)

Fig. 13. Pictures for the verification process, including the golf course and IMIDRA images with different weed densities.

results of filters and cell sizes of subpictures of pictures A), B) and C) in
Fig. 13. We divided the subpictures into two groups, those that show
the presence of weeds (WP) and those that do not (NWP). We then
combined the results of pictures A) to C) according to the filter and cell
size to generate a box plot for each combination of filter and cell size.
Box plots are used to summarise a set of data, showing the mean,
median, maximum, minimum, and outlier values. For the first plot,
sharpening (1) filter and a cell size of 10, we can see that both sets of
data have different maximum pixel values, thus allowing the use of this
combination of filter and cell size to differentiate weeds.

However, for all the other combinations, the data from the WP and
NWP subpictures showed very high similarity, thus preventing their use
for weed identification. Indeed, the use of these data would give a high
number of false positives, since pixels that do not correspond to weeds
would have the same value as those that do. Finally, we determined the
threshold to be used for weed identification. Considering the box plot,
we determined that the threshold should be between the maximum
value of NWP and the minimum value of WP (without considering
outliers), namely 78 and 92, respectively.

2.7. Verification of the method and selection of the best threshold value

To test the weed detection performance of the method with a dif-
ferent threshold, we selected three thresholds, 78, 85 and 92, and ap-
plied them to two pictures from the golf course, one with high weed
density (Picture D) and one with low weed density (Picture E). The
pictures used are provided in Fig. 12. Performance was evaluated using
the following indicators: Precision (1), Recall or Sensitivity (2), and F1
Score (3). The parameters evaluated in these indicators were False
Positives (FP), False Negatives (FN), and True Positives (TP).

We considered as FP all pixels with a value higher than the
threshold which do not represent a weed leaves. The TP is the number
of weeds with one or more pixels with a value above the threshold.
Finally, FN refers to the plants that have no pixel with a value higher
than the threshold.

The results of the validation test are summarised in Fig. 14, Table 3
and Table 4. Fig. 14 shows the results, focusing on Picture D) since the
results are more evident in this picture. Fig. 13 provides the classifi-
cation of pixels considered as weeds in red in the “General results with
threshold = 92”.

Precision = TP/(TP + FP) (@D
Recall = TP/(TP + FN) (2)
F1 Score = 2 X (Recall x Precision)/(Recall + Precision) 3

Three sections of the picture were then enlarged to facilitate the
identification of red pixels. We include for each one of these sections
the original picture, and the results with threshold = 92 and with

threshold = 72. We selected the most different thresholds in the pic-
tures to maximise the differences. As in Fig. 10, the black areas re-
present the soil, and those areas were not analysed since they were
extracted from the picture in the pre-processing stage.

In Table 3, we outline the number of TP, FP, and FN for Pictures (D)
to (E) considering the three proposed threshold values. The techniques
developed, which are a combination of two image processing techni-
ques, detected 24 out of 28 weeds in the image with high weed density
and 6 out of 7 when the lowest threshold value was used. As the
threshold value increased, the number of FN increased as the number of
FP fell. To determine the best threshold, we selected the one with
highest F1 Score in Table 4. The results indicate that the lowest
threshold showed the highest F1 Score. Although the precision of the
technique rose as the selected threshold increased, the Recall decreased
dramatically.

3. Discussion

3.1. Comparison of the proposed method with existing weed detection
systems

The most significant advantage of the proposed method compared
to existing techniques is that it can be used to detect weed species in
grass. Most approaches currently used to detect weeds are applicable
only to lineal crops and are not suitable for crops with uniform cov-
erage. Several studies (Wu et al., 2011; Yang et al., 2000; Fontaine and
Crowe, 2006) have proposed the use of object detection techniques for
weed detection, taking advantage of crop rows. The vegetation detected
in the row was deemed the crop and that out of line was considered a
weed. The high accuracy of these methods has led to their use for weed
detection in lineal crops. The method proposed in (Wu et al., 2011)
effectively identified weed presence in the inter-row areas of corn
crops. Like the method put forward in the present paper, in (Yang et al.,
2000; Fontaine and Crowe, 2006) the authors used a soil background
segmentation by combining RGB bands. The average false detection
rate was 4.36. In (Yang et al., 2000), the authors sought to distinguish
weeds between corn rows by means of fuzzy logic and used the
greenness of the pixels as the parameter to be evaluated. A series of
algorithms were developed in (Fontaine and Crowe, 2006) to identify
weed plants in corn crops to adjust local positioning. However, the
aforementioned methods are not suitable for our case study of grass
since it does not follow a linear pattern.

Some studies have used artificial intelligence to detect weeds (Yang
et al., 2002; Yang et al., 2000; Kazmi et al., 2015; Okamoto et al.,
2007). In this regard, the intensity of each pixel on the greyscale has
been used as input for an artificial neural network (ANN) (Yang et al.,
2002). The crop in that study was corn, and different weeds were
analysed, including monocotyledons and dicotyledons. This approach
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Fig. 14. Summary of identification of weed plants (in red) for Picture (D). (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

Table 3
Results of verification test in terms of FP, FN and TP.

Table 4

Value of Precision (Pre), Recall (Rec) and F1 Score (F1) for the different

Threshold = 78 Threshold = 85

Threshold = 92

thresholds.

TP FP FN TP TP FN

TP FP FN

Threshold = 78

Threshold = 85 Threshold = 92

Picture D) 24 6 4 19 4 9
Picture E) 6 3 1 5 2 2

16 3 12

3

Pre

F1 Pre Rec F1 Pre Rec F1

1 4 Picture D) 80%

Picture E) 67%

83% 83% 68% 75% 84% 57% 68%
75%  71%  71% 71% 75% 43% 55%

gave a weed detection success rate of 80%, and 62% for the different

weed species. A similar study also used an ANN to distinguish between
corn and weeds (Yang et al., 2000), in that case reporting 80-100%
detection of corn and 60-80% detection of weeds.

In another study, computer vision was used to differentiate between

sugar beet and weed (thistle) plants (Kazmi et al., 2015). In that case,
information from the edge-shaped and homogeneous surface detectors

was merged to detect related invariant regions. The false-negative rate
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of this approach was under 2%. Finally, a stereovision camera has been
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used as input for a machine vision system (Okamoto et al., 2007). In
this regard, the camera was mounted on a small field robot equipped
with a computer for image processing. Images were gathered at dif-
ferent times of the day (morning and afternoon) to ensure that the
method could be used under a range of lighting conditions. The authors
first used a combination of RGB bands to obtain derived products and
then an Asymmetric Artificial Network (AAN) to differentiate between
crops and weed. This technique achieved 90% discrimination for corn,
73.1% for tomato plants, and 68.8% for weeds.

In the future, the aforementioned detection systems are likely to
have the capacity to even determine the weed species. Despite the
promise of these systems, they require high power processors and in
most of the cases also cloud computing techniques. Since our objective
was to determine the location of weeds in real-time, or almost real-time,
and then process this information, we need a method that can be ap-
plied in a drone or other vehicles able to take a picture with a limited
hardware and software resources. Therefore, object recognition based
on cloud computing, which requires a high computation capacity, is not
appropriate for our method. Our technique can operate without high
processing capacity, neither internet access.

A third type of approach has also been used for plant detection,
namely hyperspectral cameras and simple techniques of pixel compar-
ison. In this regard, sugar beet and four different weed species were
identified using Euclidean distance and stepwise discriminant analysis
with wavelet coefficients (Jeon et al., 2011). The tests performed in that
study demonstrated that the stepwise discriminant analysis with wa-
velet coefficients has better discrimination capacity of plant species
than most of the aforementioned systems, showing 74 and 97% success
in the identification of sugar beet and the weed species respectively.

Another study proposed the use of support vector data description, a
popular boundary method, to differentiate between crop and weeds
(Liu et al., 2010), reporting 94.34 and 96.23% of identification accu-
racy, respectively. The main difference between that method and ours
are the characteristics of the crop and weeds. The pictures used in that
study were of soil and one plant (weed or crop), thereby facilitating the
distinction of the individual shape of each plant. In contrast, we used a
more complex scenario, in which plants covered 100% of the surface in
some cases. Furthermore, the selected pictures covered mixtures of
grass (the crop) and weeds.

Our novel detection method (Removing soil and dead
leaves + sharpening (I) filter + aggregation technique (cell
size) + threshold), which was tested and verified using pictures of the
golf course, including images of different areas such as the fairway,
green, and outrough, allowed the identification of weeds. Moreover, the
indicators of the classification system showed high values.

3.2. Implementation of our method in weed management systems

The image processing method described herein is conceived for use
in weed management systems that use a drone or other vehicle to
monitor grass status. Several irrigation management systems use drones
to gather images to determine irrigation needs. Our weed identification
technique is devised to be applied in the same vehicle that gathers these
images. These vehicles are generally controlled with a simple processor
unit, in which the route and picture gathering are included as algo-
rithms. Therefore, we converted our method into an algorithm that can
be included in the operational routine of the drones.

The algorithm, see Fig. 15, calls the pre-established flying para-
meters and image capture settings according to the other algorithms
included in the previous operation routine. After gathering the images,
it then applies the process described in this paper (extraction of vege-
tation pixels, edge detection filter and aggregation technique). First, the
algorithm checks whether a new image is available. Next, the code
described in (Marin et al., 2018) is applied to separate the bands of the
picture and operate with the red band. Once an image has been gath-
ered and the bands have been obtained, the algorithm applies pre-
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processing, keeping only the pixels corresponding to vegetation and
then applying the filter and aggregation technique. Next, the results are
analysed to determine the presence or absence of weeds using the es-
tablished threshold. When no vegetation pixels are detected, the pro-
cess, including edge detection filter and aggregation technique, is not
applied to the picture.

After completion of the process, the picture is tagged as no vege-
tation detected (“no vegetation”), no weed detected(“no weed”), or
weed detected (“weed”). If the image is tagged as “weed”, then the
system sends the position of the picture based on the available navi-
gation systems, which can be GPS position, the point of the established
route or the time of the route. This information is then sent to a base
station where a secondary vehicle, which can be operated by a person
or not, will be sent to the location to start the application of the phy-
tosanitary product. Furthermore, after the route ends, all the pictures
and tags are stored in a cloud server, thereby facilitating their access for
other image processing technologies that require cloud access and
higher computation capacities.

Algorithm for image processing in weed detection systems has been
used elsewhere (Kazmi et al., 2015). Nonetheless, our algorithm in-
cludes other functions such as gathering and sending data to locate the
area in which weed plants are found. Also, the algorithm proposed in
(Yang et al., 2003) includes the use of AAN, which requires higher
computational capacity than the method proposed herein.

Although the algorithm is proposed following the methodology
described in this paper, with images gathered between 1 and 1.5 m, the
results described in (Marin et al., 2018) indicates that our system can be
used with data gathered from a greater height. The main limitation in
this regard is the spatial resolution of the pictures obtained by the
drone. Further analyses are required to establish the minimum resolu-
tion of the picture required to obtain accurate results.

The algorithm and methodology used in the present study are de-
signed to operate with an RGB camera. However, since hyperspectral
images are becoming a promising tool for precision agriculture, these
images are likely to be introduced into turfgrass monitoring in the years
to come. Our algorithm can be adapted to the use of other types of
information, such as that provided by hyperspectral cameras, or the
commonly used vegetation indexes such as Normalized Difference
Vegetation Index NDVI, which include the infrared part of the spec-
trum. Furthermore, information calculated by other software, such as
the Green Area (GA), can be included in our method in the future.

It is important to note that our method has been developed to be
used under certain environmental and lighting conditions. Changes in
lighting conditions during the day and at different latitudes might affect
the performance of the algorithm. In other studies (Jeon et al., 2011),
authors have adapted existing methods to different light conditions.
While the pictures used to generate the methodology described herein
were taken in different periods of the year and at different times of the
day, we cannot affirm that the algorithm will perform with the same
precision under other lighting conditions, such as sunrise or sunset.

3.3. Differences found in the performance of the proposed method in
different scenarios

To ensure that the method can be applied in different scenarios, we
used pictures taken at diverse locations. Our results indicate that it
performs best in uniform scenarios such as the greens and fairways of
the golf course. In those areas, due to efforts in maintaining the high
quality of the turf, there are no patches of soil or dead leaves. Also,
continuous mowing confers the grass with a homogeneous appearance,
and the only alteration in this uniformity is weed plants. However, in
the outrough and ornamental grass, grass coverage is not as even as in
the previously mentioned areas. The use of a pre-processing technique
to remove soil and dead leaves from the images helps to minimise false
positives. However, in some cases, the leaves of weed species produce
shadows, which our system identifies as weeds. This is one of the most
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Fig. 15. Operation algorithm of the proposed weed detection method in control vehicles of weed management systems.

significant drawbacks of the proposed methodology. Further research
should be devoted to the use of RGB band combination to avoid this
problem.

On the basis of our results, we conclude that the proposed method
can be used on any sort of lawn. The greater the uniformity, the better
the results will be. Furthermore, turfgrass height influences the results.
When the turfgrass is kept short by regular mowing, the uniformity of
the grass is higher, thus facilitating the implementation of our method.
In contrast, when the turfgrass is not mowed periodically (as can occur
in ornamental lawns), environmental, genetic, and management dif-
ferences can lead to some individual plants having broader and more
prominent leaves than others, thus altering the uniformity.

4. Conclusion

Here we have evaluated the use of an edge detection technique to
identify the presence of weed plants in turfgrass. This technique is
characterised by its low-cost and almost real-time operation. To ensure
that applicability of our method to different types of grass, we used
images from ornamental lawns and golf courses. The novelty of the
proposed methodology is that it does not rely on the identification of
weeds through the definition of lineal crops. It can be applied in lineal
and non-lineal crops, such as the lawns. Furthermore, it is based on
edge detection rather than object detection, the latter requiring high
computational capacity and cloud access. Our system can be applied in
devices that have hardware and software constraints and that do not
need an internet connection during image processing.

The proposed method includes a pre-processing part (evaluated in
previous papers (Parra et al., 2019), image processing based on edge
detection, and post-processing involving an aggregation technique. The
processing and post-processing were evaluated by various techniques in
each step and using statistical analysis and the number of FP, FN and
other indicators (such as Rec., Pre., and F1) to evaluate performance.
Finally, the proposed method is shown as an algorithm, which can be
included in management vehicles that take pictures of the field, like
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those used in precision farming for irrigation management. It is im-
portant to note that the method has been tested in two scenarios: or-
namental and sports turf. The former differs from the latter in that
coverage is not as high and grass height grass tends to be greater. Al-
though our results indicate that our approach can be used in both
scenarios, its performance (in terms of Pre and F1) is better in orna-
mental (80% and 83%) than in sports turf (67% and 75%).

Future work will involve the evaluation of the combination of the
proposed method with other techniques, such as RGB band combination
(as done in (Marin Peira et al., 2017) or the inclusion of information
from hyperspectral images (as in (Okamoto et al., 2007) to classify the
weeds detected. Furthermore, verification of the proposed methodology
under changing light conditions, as presented in (Jeon et al., 2011), will
be performed. In addition, a combination of previous pictures can be
used to evaluate the effects of new phytosanitary treatments for re-
sistant weeds. Finally, the use of pictures and image processing for the
detection and identification of other grass disturbances caused by dis-
eases, such as Dollar spot, Fusarium patch disease, Rhizoctonia dis-
eases, and Take all patch infection, will be evaluated.
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